IMPORTANT: All INNOWOOD products must be installed in strict accordance with INNOWOOD’S current (at time of installation) “INSTALLATION MANUAL” and “CARE AND MAINTENANCE GUIDELINES” which can be downloaded from our website: www.innowood.com

Failure to comply with these documents may void warranty and result in an unsatisfactory outcome.
BEFORE YOU COMMENCE

Please note that:

The Product is subject to natural variation* in finish as part of the manufacturing process. The purchaser or their installer/builder is responsible for inspecting, prior to installation, the colour, finish and size of the product, identifying whether the Product has any other defect or manufacturing fault, and for ensuring the Product meets surface appearance and product specification requirements. Subject to the terms of our warranty, INNOWOOD is not liable for claims made after the installation of the Product that relate to surface appearance and product specification.

*INNOWOOD product is made predominantly from timber waste, colour will vary up to +/-20% according to the timber used in its manufacture.

It is the responsibility of the specifier or other party to ensure that the information in this manual is appropriate for the intended application and further design detailing may have to be made for specific applications that fall outside the scope of the manual.

Information contained on this document is the copyright of INNOWOOD Australia Pty Ltd. Use or copying of this document in whole or in part without the written permission of INNOWOOD Australia is not permitted.

FLAT JOINT FIXING PARTS

<table>
<thead>
<tr>
<th>PROFILE OPTIONS</th>
<th>WC05025</th>
<th>WC08025</th>
<th>WC14025</th>
<th>WC12040</th>
<th>WC10030</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRODUCT CODE</td>
<td>WC05025</td>
<td>WC08025</td>
<td>WC14025</td>
<td>WC12040</td>
<td>WC10030</td>
</tr>
<tr>
<td>COVERAGE</td>
<td>50mm</td>
<td>80mm</td>
<td>140mm</td>
<td>120mm</td>
<td>100mm</td>
</tr>
<tr>
<td>SPAN CENTRES</td>
<td>External Use 450mm Internal Use 600mm</td>
</tr>
</tbody>
</table>

ACCESSORY OPTIONS

Aluminium Connection Bar
CODE: ALCB3916

NOTE:
To ensure long-term performance, we recommend that a professional trade person carry out the installation. The installation MUST be carried out in accordance with these instructions including the use of all trims and accessories.
Installation Tips and Requirements

INNOWOOD products can be worked with ordinary woodworking tools such as:

<table>
<thead>
<tr>
<th>Tool</th>
<th>Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular Saw</td>
<td>Cordless Drill</td>
</tr>
<tr>
<td>Crosscut Mitre Saw</td>
<td>Level & Chalk Line</td>
</tr>
<tr>
<td>Carpenters Square</td>
<td>Tape Measure</td>
</tr>
</tbody>
</table>

NOTE: To ensure long-term performance, we recommend that a professional trade person carry out the installation. The installation MUST be carried out in accordance with these instructions including the use of all trims and accessories.

Site storage & Product Handling

- INNOWOOD boards should not be stored in the open or covered or wrapped with plastic sheet. INNOWOOD boards are a finished product, do not dump or drop when loading or unloading. Always handle with care.

- INNOWOOD boards should be stored under cover and protected from the elements (including direct sunlight and rain) until ready to install. Remove any plastic wrap including shrink wrap and store on a dry and flat surface supported at max 450mm centres.

- When removing INNOWOOD boards from the pack, do not slide boards against each other, lift the boards and set them down carefully.

- INNOWOOD boards should be carried on their edge for better support.

- When handling INNOWOOD boards take care to avoid scratches, nicks and other damage to the boards.

Thermal movement

Any wood based products will expand and contract with changes in temperature. The amount of expansion varies according to the amount of change in temperature. Although thermal movements are reversible, these movements due to temperature change may vary by up to 2mm per meter.

INNOWOOD boards that have been exposed to direct sun for several hours, prior to installation will have expanded more than boards left in the shade. It is important to maintain an average consistent temperature for all boards as they are being installed.

Avoid installing in full sun if ambient temperature is above 30°C. Ensure the boards are kept out of the sun until installed to limit the boards expansion prior to installation. INNOWOOD products can tolerate a temperature range from -20°C to +65°C.

If the product is to be used in an environment outside of this temperature range, please consult INNOWOOD.

Please bear in mind that:

- Where INNOWOOD boards are to be screw fixed, clearance holes must be pre-drilled before fixing (both INNOWOOD boards and accessories).

- The clearance hole to be drilled must be slightly greater than the outside screw thread diameter.

- Screws must be minimum 15mm but maximum 25mm away from board edges (unless noted otherwise)

- INNOWOOD products must not be used for any structural purpose.

- The cut surface must be sealed with a layer of protective coating such as a water based deck sealer before installation.

- When exposed to direct sunlight, surface temperature may be significantly hotter than ambient temperature.
Framing Construction Requirements

INNOWOOD cladding may be fixed to either of the framing options as set out below:

Stud Framing

Cladding must not be fixed directly to stud framing as adequate ventilation is required behind cladding. Metal top hats or timber battens must always be used over the top of stud framing to create a minimum cavity of 35mm.

Timber Battens (Vertical or Horizontal Boards)

INNOWOOD cladding can be screwed to timber battens provided the following requirements are satisfied:

- Timber must be minimum 35mm thick with a face width of no less than 70mm.
- Timber must be adequately seasoned & deemed for structural use.
- Timber battens must be set at max 450mm centres for external cladding or 600mm for internal cladding.
- Battens must be located expressly at the start and finish of each cladding run to enable the 1st and last screws in each board to be located 15-25mm in from end of cladding.
- Fixing spans and screw types are shown in the following tables.

Expansion Joints

Never span cladding across expansion joints in structure. If necessary terminate the cladding on either side of any expansion joint to prevent damage to the cladding and/or structure.

MAXIMUM FIXING SPANS FOR TIMBER BATTENS

<table>
<thead>
<tr>
<th>BATTEN SIZE</th>
<th>MAX SPANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>35 X 70mm</td>
<td>800mm</td>
</tr>
<tr>
<td>45 X 70mm</td>
<td>1000mm</td>
</tr>
</tbody>
</table>

BATTEN SCREW TYPE

<table>
<thead>
<tr>
<th>BACK STRUCTURE TYPE</th>
<th>SCREW TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasoned Timber</td>
<td>#14 bugle head batten screw with minimum 40mm embedment</td>
</tr>
<tr>
<td>Steel Framing</td>
<td>#14-10x50 self drilling hex head (35mm batten) or #14-16 x 65mm self drilling hex head (45mm batten)</td>
</tr>
<tr>
<td>Concrete</td>
<td>Ø10 screw in self tapping masonry anchor with min 50mm engagement. Eg. Icoons- thunderbolt pro hex head</td>
</tr>
</tbody>
</table>
Steel Top Hat Battens

INNOWOOD cladding can be screwed to steel top hat battens provided the following requirement are satisfied:

- Top hats must have a face width of no less than 50mm and a wall thickness of no less than 1.15mm.
- Total depth of top hat plus packing and any non compressible thermal break tape (if using) must be minimum 35mm for walls and 15mm for soffits. Note: Thermal break must be non compressible.
- Top hats must be set at max 450mm centres for external cladding or 600mm for internal cladding.
- Top hats must be fixed to structure at the required centres as per the table below and must always be fixed through both legs at all fixing points.
- Top hats must be located expressly at the start and finish of each board run to enable the 1st and last screws in each board to be located 15-25mm in from end of cladding.

FIXING SPANS FOR TOP HAT

<table>
<thead>
<tr>
<th>STAFF</th>
<th>STAFF</th>
<th>CROSS</th>
<th>CROSS</th>
<th>STAFF</th>
<th>STAFF</th>
<th>CROSS</th>
<th>CROSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>24</td>
<td>15</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>35</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>35</td>
<td>700</td>
<td>800</td>
<td>950</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>700</td>
<td>800</td>
<td>950</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal Break

When fixing metal top hat to metal stud framing, hard plastic packers to a minimum thickness of 10mm must be used between stud frame and top hat to provide a thermal break for heat transfer. Do not use any form of compressible material in place of hard plastic packers.

TOP HAT SCREW TYPES

<table>
<thead>
<tr>
<th>BACK STRUCTURE TYPE</th>
<th>SCREW TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seasoned Timber</td>
<td>#12 Type 17 Hex Head Tek screw with minimum 40mm embedment</td>
</tr>
<tr>
<td>Steel Framing</td>
<td>#12-14 X 30mm Self drilling Hex head Tek Screw</td>
</tr>
<tr>
<td>Concrete</td>
<td>ø6.5 screw in self tapping masonry screw with minimum embeddment of 50mm. Eg. Iccons - Grabcon</td>
</tr>
</tbody>
</table>

General Framing Notes

- Battens/Top hats must be true plumb and level to ensure a professional outcome. Packing cannot be used between Battens/Top hats and cladding boards.
- Framing that does not meet all of the criteria in this section will be inadequate and may result in the finished cladding showing any of the following characteristics: cupping, bowing, warping, expansion or contraction.

Screws

Screws must comply with AS 3566 Self Drilling Screws for the Building and Construction Industries.

Screws must have a minimum Class 3 corrosion resistance, suitable for external applications in mild, moderate industrial and marine environments and Class 4 or stainless steel for severe environments.

Screws with class 1 or 2 corrosion resistance may be used for internal use depending on the individual application.
DESIGN CONSIDERATIONS

INSTALLING ABOVE A METAL ROOF -
Metal roofing can add to the heat load of the cladding due to UV rays reflecting off the surface which may adversely affect the Innowood product under normal installation conditions. Therefore additional supports must be used to counter this as follows:

Any cladding which is above a metal roof requires the battens to be installed at maximum 225mm centres for any area of cladding which is within a 1.2m radius of the metal roof (in any direction).

MINIMUM CAVITY SPACE -
Innowood Cladding must be installed onto battens or top hats so as to achieve a cavity between boards and back structure. this cavity requirement assists in preventing the boards from over heating and potentially warping.

Minimum Wall Cavity Size : 35mm (including Thermal Break if applicable)
Minimum Soffit Cavity Size : 15mm

VENTILATION -
Innowood Cladding requires air flow through the cavity from bottom to top which is achieved via air flow openings at the top and bottom of the installation. For an installation with boards orientated vertically, it is necessary to use minimum 10mm packing behind the top hats / battens to allow the air to flow behind.

Depending on the situation the example most suitable from the diagrams below should be implemented.
* Note: Ventilation at top is not required if cladding cavity vents into a ventilated roof space.
INSTALLATION PROCEDURE - HORIZONTAL ORIENTATION

STEP 1 FRAMING SET-OUT

The framing set out is dependent on the preferred butt joint option (refer step 6).

* If using butt joint treatment - OPTION A - Staggard Butt Joints (or if no Butt Joints required).

![Diagram of Option A - Plan View]

* If using butt joint - OPTION B - Aligned with T-bar

![Diagram of Option B - Plan View]

Note: 70x35mm timber battens are used in illustration above however setout is identical when using metal top hat also.
STEP 2a

CHOOSE PREFERRED FIRST BOARD OPTION

OPTION 1

OPTION 2

J MOULD STARTER

FACE FIXING SCREW ALONG BATTEN EDGE

15mm
STEP 2b
INSTALL STARTER MOULD

2a. Use a string, spirit or laser level to establish the lowest point (no less than 15mm clearance to ground) of the cladding around the perimeter of the building. Fix the Aluminium J mould starter to each tophat / batten, using a string, spirit or laser level to keep the starter trim in a true and level plane.

SCREW TYPES REQUIRED:

<table>
<thead>
<tr>
<th>Batten Type</th>
<th>J Mould/Corner Mould</th>
<th>Connection Strip to Battens</th>
<th>Connection Strip to Board</th>
<th>Face Fixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Top Hat</td>
<td>10g x 16mm Self-drilling wafer head</td>
<td>10g x 22mm Self-drilling wafer head</td>
<td>10g x 16mm Type 17 Wafer Head</td>
<td>10g x 40mm CSK Self-drilling Screw</td>
</tr>
<tr>
<td>Seasoned Timber</td>
<td>10g x 25mm Type 17 Wafer head</td>
<td>10g x 30mm Type 17 Wafer head</td>
<td>10g x 16mm Type 17 Wafer Head</td>
<td>10g x 50mm CSK Type 17 Screw</td>
</tr>
</tbody>
</table>

NOTE
- Provision should be made for adequate drainage and ventilation behind the cladding.
- All screws are minimum 15mm but maximum 25mm away from board edges unless noted otherwise.
STEP 3

INSTALL VERTICAL J MOULD

3a. Mitre cut bottom end of J mould (if using J mould as bottom starter) and align with bottom J mould. Screw off to structure at max 600mm centres.

(NOTE: Top cut edge should normally remain square)

3b. Repeat on other side (if using on both sides)
INSTALLATION PROCEDURE

STEP 4a

PREPARING FIRST BOARD

NOTE

4a. Cut INNOWOOD board and aluminium connection bar to same length as required. Allow min 2mm clearance at each end of board and connection bar.

4b. Slide aluminium connection bar into INNOWOOD board ensuring correct orientation as shown above.
4c. Drill ø5mm clearance holes in centre of aluminium connection bar rebate along both sides every 450mm (for external use) or 600mm (for internal use) ensuring positions correspond with support structure. First and last holes to be 15-25mm in from end. Drill ø2.5mm pilot holes thru aluminium connection bar holes into INNOWOOD board approx. 15mm deep taking care not to drill too deep and penetrate thru the face of the innowood board. Using 10 gauge × 16mm long wafer head screws fix INNOWOOD board and aluminium connection bar together at each hole location. Ensure screws are not tightened so hard as to strip the thread but are locked firmly in place.
STEP 5

INSTALL FIRST BOARD

5a. Position the first cladding board against subframe. Pre-drill ∅5mm holes along bottom edge of Innowood board at each batten location. (Note: this step is not required if using J - Mould starter). Pre-drill ∅5 mm clearance holes in Aluminium connection bar for screws along groove in alignment with tophats.

5b. Screw fix the cladding board onto the top hat / battens using the screw type as nominated in the table at Step 2b. Insert face fix screws long bottom edge of board (unless using J Mould starter). Face fix screws must be used at all board ends regardless of starter option.

NOTE: - All boards must span a minimum of 3 Top Hats / Battens otherwise distortion may occur.
STEP 6

INSTALL TYPICAL BOARDS

6a. Cut cladding board and aluminium connection bar to required same length. Allow minimum 2 mm clearance each end and prepare as shown in step 4a.

6b. Fix connection bar to cladding board as shown in step 4b.

6c. Position the second cladding board with aluminium connection bar above the first board and press down firmly to engage with previous connection bar. Gently tap with a rubber mallet if required to achieve full engagement.

6d. Screw connection bar to battens.

6e. Pre-Drill Ø5mm holes at all board ends and insert face fix screws.

6f. Repeat for all remaining boards with the exception of the last board.
7a. To prepare framing for butt joint, noggings must be securely fitted between battens using same material as battens. Centre Line of noggings must align with Aluminium connection bar in boards.

7a.b. Where Butt Joints are required - set with 2mm gap between board ends. Butt joints must always be set on a single top hat/batten.

7a.c. Silicone should be applied to board ends prior to setting up against adjoining board to ensure a weather tight installation.

7a.d. Pre-Drill ø5mm holes at all board ends and insert face fix screws.

NOTE: - Butt Joints can be set in alignment or random however all boards must span minimum 3 top hats/battens.
7b.a. Fix T Bar Rear Clip to Tophats / Battens at butt joint location at maximum 600mm Centres along both sides.

7b.b. Install Boards with a 2mm clearance gap to T Bar aluminium rear clip. Ensure Boards are screwed to both centre top hat and next top hat which is 100mm away from centre top hat.

7b.c. Pre- Drill ø5mm holes at board ends and insert face fix screws.

7b.d. Press T Bar Aluminium front cover into rear clip to finish off and cover the butt joint. Tap with a rubber mallet if needed.
8a. Cut last board to required length.

8b. Measure remaining un-clad area to determine required height of final board.

 If the board can be slid down from the top (Example - Eaves are not yet installed) the board can be ripped to leave a gap of only 1-2mm from the finished structure (or eave).

 If there is a structure or element above final board, the board may have to be ripped to achieve a finished gap of up to 10mm to allow installation.

Note: Ensure a minimum ventilation gap of 10mm is left at top unless cavity vents into a ventilated roof space.

8c. Rip Board down in length to achieve required size using a power saw, track saw or similar. Dispose of the offcut.
9a. Position Final Board above previous board and press down into place, ensuring board is properly seated and level. Gently Tap with a rubber mallet if needed to achieve full engagement.

9b. Pre-Drill ø5mm clearance holes 10mm down from top edge in alignment with top hats.

9c. Screw fix the board using the “Face Fix” Screws nominated in the table at step 2b. Packing must be used at screw locations if fixing through an unsupported section of board.

9d. An aluminium trim angle or similar may be used to cover screw heads if desired.
STEP 10

CORNER DETAIL OPTION

EXTERNAL CORNER TREATMENT

- STEEL TOP HAT (USED IN REVERSE ORIENTATION)
- ALUMINIUM CORNER PART A
- MITRE CUT CLADDING BOARD
- CORNER MOULD SCREWS AT MAX 600mm CTRS
- STEEL TOP HAT (USED IN REVERSE ORIENTATION)

INTERNAL CORNER TREATMENT

- All screws are minimum 15mm but maximum 25mm away from board edges.
- All board ends must be face fixed.
INSTALLATION PROCEDURE - VERTICAL ORIENTATION

STEP 1 FRAMING SET-OUT

The framing set out is dependent on the preferred butt joint option (refer step 6)

* If using butt joint treatment - OPTION A
 - Stagger Butt Joints (or if no Butt Joints required).

* If using butt joint - OPTION B -
 Aligned with T-bar

Note: 70x35mm timber battens are used in illustration above however setout is identical when using metal top hat also.
STEP 2a

CHOOSE PREFERRED FIRST BOARD OPTION

OPTION 1
(VERTICAL J MOULD STARTER USED)

#10X16mm TYPE 17 WAFER HEAD SCREW
V GROOVE FOR FIXINGS
ALUMINIUM CONNECTION BAR ALCB3916
J MOULD STARTER USED VERTICALLY

OPTION 2
(NO VERTICAL J MOULD STARTER USED)

#10X16mm TYPE 17 WAFER HEAD SCREW
V GROOVE FOR FIXINGS
ALUMINIUM CONNECTION BAR ALCB3916
15 mm FACE FIXING SCREW
FACE FIXED SCREWS FIXED AT EACH TOP HAT / BATTEN LOCATION.
STEP 2b

INSTALL BOTTOM “J” MOULD

2b.a. Use a string, spirit or laser level to establish the lowest point (no less than 15mm clearance to ground) of the cladding around the perimeter of the building.

Fix the J mould starter to the tophats / batten using the string, spirit or laser level to keep the starter strip in a true and level plane.

2b.b. Fix another J mould starter in opposite orientation at top of area to be clad. Mitre cut one end if desired.

SCREW TYPES REQUIRED:

<table>
<thead>
<tr>
<th>Batten Type</th>
<th>J Mould/Cornet Mould</th>
<th>Connection Strip to Battens</th>
<th>Connection Strip to Board</th>
<th>Face Fixing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal Top Hat</td>
<td>10g x 16mm</td>
<td>10g x 22mm</td>
<td>10g x 16mm</td>
<td>10g x 40mm CSK Self-drilling Screw</td>
</tr>
<tr>
<td>Seasoned Timber</td>
<td>10g ×25mm</td>
<td>10g ×30mm</td>
<td>10g x 16mm</td>
<td>10g ×50mm CSK Type 17 Screw</td>
</tr>
<tr>
<td></td>
<td>Type 17 Wafer head</td>
<td>Type 17 Wafer head</td>
<td>Type 17 Wafer Head</td>
<td></td>
</tr>
</tbody>
</table>

Note: You may choose to mitre cut the J Mould at the starting edge if using a J Mould as a vertical starter.
STEP 3

INSTALL VERTICAL STARTER “J” MOULD

Using vertical Aluminium J Mould Starter

3a. Mitre Cut both J Moulds at corner joint and screw fix to top hats using screws nominated in table at step 2b.

NOTE: Vertical J - Mould may be used at starting side of cladding only.
INSTALLATION PROCEDURE

STEP 4a

PREPARING FIRST BOARD

NOTE

4a. Cut INNOWOOD board and aluminium connection bar to same length as required. Allow min 2mm clearance at each end of board and connection bar.

4b. Slide aluminium connection bar into INNOWOOD board ensuring correct orientation as shown above.
4c. Drill ø5mm clearance holes in centre of aluminium connection bar rebate along both sides every 450mm (for external use) or 600mm (for internal use) ensuring positions correspond with support structure. First and last holes to be 15-25mm in from end. Drill ø2.5mm pilot holes thru aluminium connection bar holes into INNOWOOD board approx. 15mm deep taking care not to drill too deep and penetrate thru the face of the innowood board. Using 10 gauge × 16mm long wafer head screws fix INNOWOOD board and aluminium connection bar together at each hole location. Ensure screws are not tightened so hard as to strip the thread but are locked firmly in place.
STEP 5
INSTALLING BOARDS

5a. Prepare boards as indicated in step 4.

5b. Position the first cladding board into vertical J-Mould Starter (if using) to ensure full engagement. Screw fix the cladding board onto the top hats using the screw type as nominated in the table at step 2b.

5c. If using first board option 2 (Refer step 2a) you must now face fix along starting edge.

5d. Inert face fix screws at board ends as indicated.

5e. Position the second cladding board against the first ensuring that the board is properly seated and plumb. Gently tap into place with a rubber mallet if required while engaging with previous connection strip. Face fix board ends screw into place along the groove of Aluminium connection bar.

5f. Repeat step 5d & 5e until only the last board remains.

NOTE: All boards must span a minimum of 3 Top Hats / Battens.
STEP 6a - OPTION A

BUTT JOINT TREATMENT - STANDARD OPTION

6a.a. To prepare framing for butt joint, noggings must be securely fitted between battens using same material as battens. Centre Line of noggins must align with V groove in boards.

6a.b. Where Butt Joints are required - set with 2mm gap between board ends. Always set butt joint on a single top hat.

6a.c. Silicone should be applied to board end prior to setting up against ajoining board to ensure a weather tight installation.

6a.d. Pre-Drill ø5mm holes at board ends and insert face fix screws.

NOTE: Butt joints can be set in alignment or random however all boards must span minimum 3 top hats/battens
STEP 6b - OPTION B

BUTT JOINT TREATMENT - ALIGNED WITH T BAR

6b.a. Fix T Bar Rear Clip to Tophats/battens at butt joint location at maximum 600mm Centres along both sides.

6b.b. Install Boards with a 2mm clearance gap to T Bar aluminium rear clip. Ensure Boards are screwed to both centre top hat and next top hat which is 100mm away from centre top hat.

6b.c. Pre-Drill Ø5mm holes at board ends and insert face fix screw.

6b.d. Press T Bar Aluminium front cover into rear clip to finish off and cover the butt joint. Tap with a rubber mallet if needed.
STEP 7
PREPARE FINAL BOARD

7a. Cut last board to required length.

7b. Measure remaining un-clad area to determine the width of the final board. If the board can be slid on from the edge then the board can be ripped to leave a gap of only 1-2mm from the finished structure/element. If this is not possible then the board may have to be ripped to achieve a finished gap of up to 10mm.

7c. Rip Board down in length to achieve required size using a power saw, track saw or similar. Dispose of the offcut.
STEP 8

INSTALL FINAL BOARD

ENSURE TOP IS OPEN AND ALLOWS AIR FLOW THROUGH BEHIND CLADDING (MINIMUM 10mm OPENING ALONG ENTIRE TOP OF CLADDING).

8a. Position final board next to previous board and push across into place, ensuring board is properly seated & engaged. Gently Tap with a rubber mallet if needed.

8b. Pre-Drill ø5mm clearance holes 10mm in from finishing edge in alignment with top hats.

8c. Screw fix the board using the correct screws nominated in the table at step 2b. Packing must be used at screw locations if fixing through an unsupported section of board.

8d. An aluminium Trim angle or similar may be used to cover screw heads if desired.
STEP 8
CORNER DETAIL OPTION

EXTERNAL CORNER TREATMENT

- Mitre cut
- Steel top hats
- Aluminium corner
 - Part A
- Aluminium corner
 - Part B
- Face fix screws along board edges at corner (ensuring trim will cover)
- Min 10mm hard plastic packers

INTERNAL CORNER TREATMENT

- All screws are minimum 15mm but maximum 25mm away from board edges unless noted otherwise.
- All board ends must be face fixed.

INNOCLAD
WC05025/08025/14025

MIN 10mm HARD PLASTIC PACKERS
STEEL TOP HATS

INNOCLAD
WC05025/08025/14025

MIN 10mm HARD PLASTIC PACKERS
ALUMINIUM CORNER
PART A
ALUMINIUM CORNER
PART B
FACE FIX SCREWS ALONG BOARD EDGES AT CORNER (ENSURE TRIM WILL COVER)